Music Selection of Successful Choirs at UIL and Non-UIL Contests

Janice N. Killian
Texas Womanís University

This research was designed to explore potential differences in repertoire selection between highly rated and less highly rated choirs. Obviously adjudicators can and do determine that one group performs better than another, and previous research has addressed musical and non-musical factors that may affect judges and their ratings (see Killian, 1998). In addition to musical performance similarities, however, are there demographic commonalities that characterize the more highly rated groups? Since previous research has indicated the existence of significant differences in non-musical characteristics between highly rated and less highly rated choral groups (Killian, 1998), the present study was designed to replicate and extend those findings.

The previous study (Killian, 1998) indicated that, indeed, several factors consistently seemed to be present in more highly rated choirs. Of particular interest was the finding that characteristics of musical selection varied between higher and lower rated groups, and that specific selection types varied by age of singer. For example, significantly more superior ratings were awarded to seventh and eighth grade mixed choirs (combination of male and female singers) who performed SATB voicings as opposed to those using SAB or three-part mixed voicings. Sixth grade mixed groups, however, earned higher ratings when they sang three-part mixed selections as compared with SA (treble) selections. This effect was present only in mixed choirs; neither treble choirs nor tenor-bass groups exhibited significant differences in ratings relative to voicings of the music sung.

It should be remembered that choral music is typically arranged for specific voices. SATB indicates soprano, alto, tenor, bass voicing and SAB indicates soprano, alto, bass. Three-part mixed voicing also includes soprano, alto and "bass," but the bass part is deliberately written in a very limited range (usually less than 6 notes, typically G below middle C to the D above) to accommodate the needs of changing-voice boys. The bass part of SAB music is generally more difficult (wider range, greater number of skips, more challenging melodic contours) than the bass part of three-part mixed selections (Beery, 1996). Thus three-part mixed is usually recommended for less experienced choirs with boys whose voices are beginning to change, whereas SAB is written for older mixed choirs with more mature male voices (Collins, 1999).

Cooksey (1977) determined the ages and stages through which boysí voices progress from childhood into adulthood. His data established Grades 7 and 8 as the time during which most boysí voices will be changing; however, more recent data (Killian, 1997) seem to indicate that boysí voices are changing earlier than Grades 7 and 8. If this is true, then sixth grade mixed groups who once sang treble music (SA and Unison) might be expected to achieve more success singing music designed to accommodate boys early in the voice change process (three-part-mixed). Furthermore, if boysí voices are changing earlier, then those boys who previously performed three-part mixed music in Grades 7-8 might be more successful performing SATB music.

Data from the previous study (Killian, 1998) supported this assumption. Sixth grade mixed choirs who chose three-part mixed music were significantly more likely to earn superior ratings than those who sang SA music. Likewise, seventh and eighth grade mixed choirs who selected SATB music earned significantly more high ratings than did those singing three-part mixed selections.

The current study was designed to replicate the previous findings, expand the number of choirs tested, and examine potential differences in music selection when directors are required to choose music from a prescribed list versus when they are free to select music from any source.

Procedures
Subjects were intact choirs (N = 237) participating in the 1998 Sandy Lake Choir Funfest in Carrollton, Texas (n = 119 choirs) or the 1998 Texas University Interscholastic League (UIL) Concert and Sight-Reading contests in the Dallas and Corpus Christi areas (n = 118 choirs). Sandy Lake Choir Funfest choirs performed two selections (n = 238 songs) of the director's choice, and UIL choirs performed three selections (n = 354 songs), two of which must have been from the Texas University Interscholastic League Prescribed Music List (1994). Thus analysis was made on 237 choirs performing 592 songs. Choirs ranged in size from 7 to 120 members. The choirs consisted of 144 mixed groups (32 UIL, 112 Sandy Lake), 76 treble groups (71 UIL, 5 Sandy Lake) and 17 tenor-bass organizations (15 UIL, 2 Sandy Lake).

The groups included 9,098 singers, 2,270 of whom were boys (25%). No effort was made to determine if any singers performed in more than one choir. Choirs included singers from Grades 1 through 12, but the majority of the choirs comprised seventh and eighth graders (99 choirs), followed by elementary groups (66 choirs), ninth through twelfth graders (42 choirs), and sixth graders only (30 choirs).

A panel of three experienced choral educators meeting the standards of the Texas Music Adjudicators Association served as judges for the UIL competitions. Similarly qualified persons were selected to adjudicate the Sandy Lake contest. Sandy Lake ratings consisted of I (highest) to III (lowest); pluses and minuses were allowed. UIL ratings consisted of I (highest) to V (lowest) without the possibility of plus or minus ratings. All possible rating levels were used in each contest.

Judges independently rated each choir and then the three ratings were averaged for a single total score per choir. Because this study was designed to examine the possible differences between successful and unsuccessful choirs, it was necessary to isolate the highest achieving groups by discriminating between the I ratings that were "pretty good" and I ratings that were "truly outstanding." Thus following procedures established in the previous study, contest ratings were collapsed into two categories. "Superior" choirs at Sandy Lake consisted of those receiving three I or I+ ratings or no more than a single I minus rating. "Superior" choirs at UIL consisted of those receiving three I ratings. "Not Superior" ratings were assigned to all other choirs. Using this stringent standard, UIL contest results averaged 33.9% I ratings and Sandy Lake results averaged 34.5% I ratings.

Results

Throughout the analysis, the dependent measure consisted of the number of superior ratings calculated as described above. Descriptive data about each choir were collected during the contest performances and consisted of: specific titles performed; voicings of the titles performed (SA, SATB, etc.); grade level(s) of singers (as listed on each entry); entry type (mixed, treble, tenor-bass); class (UIL classification based on size of school grades 6-12); size of choir (based on actual count during the performance); and the number of boys in each choir (based on actual count during the time of performance). Subsequently, data were expanded to include: ratio of boys to total number of singers; ratio of boys collapsed into categories for ease of analysis (0-19%, 20-39%, etc); and overall choir sizes collapsed into 15 person segments ranging from 0-15 to 106-120.

Because the Sandy Lake contest rules allowed choirs the option of singing one or two songs, for analysis purposes, each choir was assumed to have sung two selections (119 choirs = 238 songs). UIL contest required 3 selections (118 choirs = 354 songs). Thus 237 choirs were assumed to have performed 592 songs, each of which conceivably could have had different voicings.

All data were analyzed using the Chi-squared statistic due to the nominal nature of the dependent measure (frequency of superior ratings). All possible combinations were computed; statistically significant findings and findings that differ from the previous study (Killian, 1998) are reported below.

Size of choir. Consistent with the previous study, larger choirs (> 30 singers) earned significantly more superior ratings than did smaller choirs, $\chi^2(7, N = 592) = 42.0, p < .0001$.

Size of school. Although previous research indicated that larger schools received significantly more superior ratings than smaller schools, this yearís data indicated no significant differences in ratings
between larger and smaller schools at either the Sandy Lake contest, $\chi^2(6, N = 238) = 12.0, p > .06,$ or at the UIL competition, $\chi^2(6, N = 354) = 10.2, p > .11$.

Table 1. **Most frequently performed songs.**

<table>
<thead>
<tr>
<th>Title</th>
<th>Composer</th>
<th>n of groups Performing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sing a Jubilant Song*</td>
<td>Perry</td>
<td>8</td>
</tr>
<tr>
<td>My Heart Will Go On</td>
<td>Billingsly</td>
<td>7</td>
</tr>
<tr>
<td>Love in Thy Youth*</td>
<td>Crocker</td>
<td>6</td>
</tr>
<tr>
<td>Stars Are for Those Who Lift Their Eyes*</td>
<td>Delmonte</td>
<td>6</td>
</tr>
<tr>
<td>Adoramus Te*</td>
<td>Crocker</td>
<td>6</td>
</tr>
<tr>
<td>All Join Hands*</td>
<td>Crocker</td>
<td>5</td>
</tr>
<tr>
<td>Annabel Lee*</td>
<td>Habash</td>
<td>5</td>
</tr>
<tr>
<td>Charlotte Town*</td>
<td>Crocker</td>
<td>5</td>
</tr>
<tr>
<td>Come Jesus Holy Song of God*</td>
<td>Handel</td>
<td>5</td>
</tr>
<tr>
<td>Didnít My Lord Deliver Daniel*</td>
<td>Emerson</td>
<td>5</td>
</tr>
<tr>
<td>Night Song*</td>
<td>Hester</td>
<td>5</td>
</tr>
<tr>
<td>Shoshone Love Song</td>
<td>Emerson</td>
<td>5</td>
</tr>
<tr>
<td>Gloria Festiva*</td>
<td>Crocker</td>
<td>4</td>
</tr>
<tr>
<td>Hush My Babe*</td>
<td>Kovdelka</td>
<td>4</td>
</tr>
<tr>
<td>Sing Praise Alleluia*</td>
<td>Crocker</td>
<td>4</td>
</tr>
<tr>
<td>Spring Quiet*</td>
<td>Crocker</td>
<td>4</td>
</tr>
<tr>
<td>Your Friend Shall Be the Tall Wind</td>
<td>Porterfield</td>
<td>4</td>
</tr>
</tbody>
</table>

*indicates inclusion on the UIL *Prescribed Music List* (1994).

Size of school in relation to size of choir. Comparison of school size with choir size revealed a significant relationship between these variables, $\chi^2(42, N = 400) = 118.1, p < .0001$. Unlike the schools observed in the previous study, the larger schools had significantly larger choirs. Note that elementary school was omitted from the analysis due to unavailability of school size for elementary populations. Examination of the specific size categories revealed that the greatest number of choirs had 16-30 members (214 choirs), followed by the 31-45 person category (143 choirs), and the 46-60 person category (116 choirs).

Choir type. Last yearís data (collected solely at Sandy Lake) indicated that treble groups received
significantly more superior ratings than either mixed or tenor bass ensembles. This yearís data at Sandy Lake indicated the same tendency, $\chi^2(2, N = 338) = 8.1, p < .02$. Percentages of superiors awarded at Sandy Lake were: treble = 72.7%; mixed = 32.4%; and tenor-bass groups = 50.0%. There were no significant differences in the number of superiors awarded among choir types at the UIL competition, $\chi^2(2, N = 354) = 2.3, p > .31$. There was no overall relationship between ratings and choir types when UIL and Sandy Lake data were combined, $\chi^2(2, N = 592) = 3.2, p > .20$.

Age of singers. Last yearís data indicated that seventh and eighth grade choirs (both treble and mixed) received significantly more superiors than did sixth grade groups. Current overall data indicate no significant relationship between age of singers and superiors received, $\chi^2(2, N = 592) = 1.5, p > .47$. Mixed choir ratings, however, differed significantly by age, $\chi^2(2, N = 319) = 11.9, p < .04$. UIL contest (which excludes sixth graders) granted superiors more frequently to high school than to seventh and eighth grade groups, $\chi^2(1, N = 96) = 4.7, p < .03$. Sandy Lake (the only contest to include sixth graders) awarded more superiors to sixth graders than to high school or seventh-eighth grade mixed choirs, $\chi^2(2, N = 140) = 5.9, p = .05). There was no significant differences among treble groups relative to age of singers, and tenor-bass groups were too infrequent to allow separate analyses.

Specific songs chosen. There were 592 total songs sung, which included 452 different selections. Seventeen songs were performed by more than three groups. The most frequently performed songs are shown in Table 1. Examination of the previous research revealed that only a single song (Did nit
My Lord Deliver Daniel by Emerson) appeared on both this list and the previous list.

Number of Male Singers. Ratio of boy singers to total number of singers was computed, and the resulting percentages were summarized into categories of 20 percentage points per category for comparison purposes. Previous data indicated that the choirs with the larger ratios of boys to total singers received significantly more superior ratings. Overall the current data indicate that there were no significant relationship between numbers of superiors and male singer ratios, $\chi^2(2, N = 236) = 0.14, p > .93$. There were, however, differences across grade levels. Among mixed choirs in grades 6 through 12, neither high school groups, $\chi^2(2, N = 60) = 3.8, p > .14$, nor seventh-eighth grade groups, $\chi^2(2, N = 68) = 4.4, p > .10$, exhibited a rating difference relative to the number of boys in the choir. The sixth grade choirs, however, exhibited a significant difference. The groups with the fewest number of boys earned the most superior ratings, $\chi^2(2, N = 107) = 8.0, p < .02$. Specifically, 55% of the sixth grade mixed choirs with fewer than 19% male singers received superiors; 40% of the sixth grade mixed choirs with more than 20% boys earned superiors; and no sixth grade mixed choirs with more than 40% boys earned superior ratings.

Voicings. The initial study indicated that there was a significant difference in ratings depending on the music voicing selected (e.g., SA, three-part mixed, SAB, SATB). Specifically, more superior ratings were received by sixth grade mixed choirs who sang three-part mixed music and among seventh-eighth grade mixed choirs who performed SATB music.

Present data indicate that among mixed groups in Grades 6 through 12 there was also a significant relationship between ratings and voicings, $\chi^2(6, N = 236) = 13.8, p < .04$. When separated by contest type, however, results indicated no significant differences. Further examination of the percentages of superiors earned among various voicings revealed differences among grade levels. High school groups earned 40% superiors when singing SATB music, 33% superiors when singing three-part mixed music, and 7.7% superiors when singing SAB music. Seventh and eighth grade groups exhibited a much lower percentage of superior ratings overall (three-part mixed = 22% superiors; SAB = 15.8% superiors, and SATB 10% superiors). Unlike the choirs in the previous study, those singing SATB music did not earn higher ratings. Among sixth grade groups (who in the previous study had earned superiors when singing three-part mixed music) there was no three-part mixed music selected. All sixth grade music performed was SA or Unison. Consistent with the earlier study, neither
the ratings of the treble groups, $\chi^2(4, N = 224) = 4.0, p > .40$, nor the tenor bass groups, $\chi^2(5, N = 49) = 8.1, p > .15$, were affected by the voicings chosen.

UIL and Sandy Lake Comparisons. Analyses indicated that the two types of contests did not differ significantly by number of superiors awarded, or by ratio of boys to total singers, $\chi^2(3, \ N = 340) = 2.4, p > .50$. The relationships between ratings and choir type were different in the two contests; UIL showed no significant differences in ratings among types of choirs (treble, mixed, tenor bass), whereas Sandy Lake ratings favored treble groups, $\chi^2(2, N = 238) = 8.0, p < .02$. Voicings selected also varied between the two contest formats, $\chi^2(11, N = 592) = 113.5, p < .0001$, but those results may have been affected by the fact that several voicings selected at UIL competition were not present at Sandy Lake at all (TTBB, SSAA, and SB).

Discussion

This descriptive study was designed to replicate previous findings that had been gathered at the 1997 Sandy Lake Funfest competition, and to extend that information to include two types of contests: UIL and Sandy Lake. The UIL competition has strict literature selection rules. A UIL Prescribed Music List is created every four years through a rigorous committee review process. Directors then must select two pieces from that list with a third selection from any source, but of the same quality as the prescribed pieces. Thus directors receive guidance in their literature selections. The Sandy Lake contest allows directors to select from a wider spectrum of music and, in fact, discourages picking music from the UIL Prescribed Music List, allowing performance of only a single UIL song. Thus, one would expect more variety of selection to occur at Sandy Lake, and thus perhaps Sandy Lake might be a better indicator of the effect of voicing selection on rating.

Of particular interest were data involving music selection relative to voicings, especially as it involves sixth graders. If boys’ voices are changing earlier (Killian, 1997), then that change could be expected to become evident in sixth grade instead of in the seventh or eighth grade years that Cooksey’s 1997 data suggested. Thus one would expect to see sixth graders performing music that was once thought appropriate for seventh and eighth grade groups. The initial study supported this assumption. Sixth graders who performed three-part mixed music received significantly more superiors than did those who performed the more typical SA music. Likewise, seventh and eighth graders, who might previously have performed three-part mixed voicings (Collins, 1999), were more successful when they performed SATB music, thus supporting the earlier voice change assumption.

The present data did not indicate that sixth graders were more successful performing three-part mixed music. In fact, no three-part mixed music was performed by sixth graders at Sandy Lake (the only contest that allows sixth grade participation). All sixth graders performed SA or Unison pieces. Thus, no analysis of the voicing variable was possible and no comparison with last year’s data was available.

Closer examination of the data revealed that the successful sixth grade groups, as measured by superior ratings, did not include many boys. The sixth grade groups with the largest ratio of boys (> 40%) received no superior ratings (out of 8 performances). Groups with > 20% boys (70 performances) received 40% superiors and those with < 19% boys (30 performances) earned 53% superior ratings. The fewer the boys, the higher the ratings. Is it possible that boys are selecting out of choir in sixth grade? Is it possible that directors are selecting only the “best singers” to participate in a contest, and are leaving changing-voice boys home? Is it possible that boys’ voices, despite data to the contrary, are not changing until seventh or eighth grade? Further research is definitely indicated.

The current findings regarding music selection conflict with previous speculations that seventh and eighth grade mixed choirs would be more successful performing SATB music (Collins, 1999) and with previous data supporting that idea (Killian, 1998). The UIL contest mixed choir results indicate that
seventh-eighth grade groups performing SATB music received 10% superiors; three-part mixed music earned 23.5% superiors; and SAB music received 17.7% superiors. These results may reflect differences in music selection, may be the result of an older sound bias among judges, or may simply be a reflection of the overall quality of seventh and eighth grade performances. The fact that the overall percentage of superiors was lower for seventh and eighth grade groups than for high school choirs lends credence to these speculations.

Judges definitely rewarded high school choirs who selected SATB voicings. High school choirs received 55.6% superiors when performing SATB music, but no superiors when performing SAB music. This may be the result of the effectiveness of SATB voicing (Collins, 1999) or may indicate a selection process in which small choirs with few boys are forced to perform SAB music and the lack of balance among parts earns lower ratings.

The present research illustrates the kind of question that can be approached by gathering and analyzing data based on the every-day activities of most choir directors. It is hoped that such data collection will be continued so that we can approach the art of the choral education from a data-based perspective. Further examination of the relationship between contest ratings and music selections, and the influence of contest ratings on male recruitment and retention in choral music certainly, seems warranted.

References

